Supporting Timely, High-Resolution Air Quality Data Availability in Africa by Fusing Satellite Observations of Aerosol Optical Depths, PM_{2.5} Model Data, and PM_{2.5} Surface-Based Measurements

Nathan Pavlovic¹, Sean Khan², Brian Sullivan³ ¹Sonoma Technology, Petaluma, CA; ²United Nations Environment, Nairobi, Kenya; ³Google, Inc., Mountain View, CA

The International Data Fusion System

- We developed a framework for fusing satellite observations, air quality model data, and ground-level observations of PM_{2.5} to help fill the air quality data gap in Africa.
- The data fusion framework calculates daily ground-level PM_{2.5} at 1 km spatial resolution.

Motivation

- Almost 4.5 million premature deaths per year can be attributed to fine particulate matter (PM_{2.5}) pollution.
- In many parts of the world, there are a limited number of ground-based air quality monitoring instruments.
- Growing low-cost sensor networks compliment reference-grade instrument observations to fill the data gap.
- By combining ground observations (including low-cost sensors) with information from satellites, a promising solution to help fill the information gap on air quality may be possible.

Figure 1. Surface measurements available in Africa and satellite data showing aerosol optical depth (AOD) on sample day. Satellites provide data coverage that can help to fill gaps in the monitoring network.

Input Data

- Surface estimates of PM_{2.5} are derived from satellite aerosol optical depth (AOD) retrievals and modeling results (e.g., van Donkelaar et al., 2012).
- Satellite PM_{2.5} estimates are combined with surface observations where available.

Data Set	Spatial Resolution	Spatial Coverage	Temporal Resolution	Time Period	Uses
Copernicus Atmosphere Monitoring Service (CAMS) Near-Real-Time PM _{2.5}	40 km, interpolated to 12.5 km	Global	3 hours	2014 - Present	Adjust MAIAC AOD to surface PM _{2.5}
Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD	1 km	Global	Daily	2000 – Present	Develop surface PM _{2.5}
Monthly PM _{2.5} (data set V4.GL.03)	1 km, smoothed	Global	Monthly	2012- 2017	Adjustment for MAIAC AOD
Ground Measurements of PM _{2.5}	Point-based	Limited Urban Areas	Hourly	Variable	Validation and data fusion

Table 1. Data sets used in the fusion.

Lee, S.J., Serre, M.L., van Donkelaar, A., Martin, R.V., Burnett, R.T. and Jerrett, M., 2012. Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient PM_{2.5} concentrations across the continental United States. Environmental Health Perspectives, 120(12), pp.1727-1732. Van Donkelaar, A., Martin, R.V., Pasch, A.N., Szykman, J.J., Zhang, L., Wang, Y.X. and Chen, D., 2012. Improving the accuracy of daily satellite-derived ground-level fine aerosol concentration estimates for North America. Environmental Science & Technology, 46(21), pp.11971-11978.

- Results suggest that data fusion shows promise for near-real-time monitoring of air quality in Africa.
- Operational production of satellite-based PM_{2.5} shows promise for applications now, while facilitating additional evaluation and enhancement in the future.

Data Fusion System

- We implemented data processing on Google Earth Engine (GEE) for retrospective analysis from 2014 to 2019.
- Data are ingested to GEE, where processing is completed at 1 km spatial resolution daily.
- Satellite-derived ground-level PM_{2.5} are combined with ground-level air quality observations using uncertainty estimate (Lee et al., 2012).

Figure 2. Data processing flow used to calculate fused PM_{2.5} data in the data fusion system.

Fusion Validation

- Validation of satellite (MAIAC) surface PM_{2.5} was performed using reference-grade monitor data.
- For select locations (where two or more reference-grade monitors are available), validation of the ground-level $PM_{2.5}$ from fusion was performed.
- Independent surface observations were compared with fusion result for locations in Ethiopia (Addis Ababa Central) and Senegal (Bd. Rep.).

Figure 4. Validation site locations.

Figure 5. Results of independent validation of (1) data fusion for locations with multiple reference-grade monitors where full fusion can be conducted (top) and (2) satellite-only $PM_{2.5}$ data at those locations (bottom).

Figure 3. The combination of satellite retrievals of total-column aerosols with the vertical distribution information derived from modeling facilitates the calculation of ground-level $PM_{2.5}$.

Annual Average PM_{2.5}

MAIAC/CAMS.

Implications

- PM_{2.5} calculations.
- CAMS and Monthly PM_{2.5} (data set V4.GL.03) model data produce comparable daily results and can be used depending on data availability.
- Satellite data gaps can limit coverage in time, but several promising gap-filling approaches are available.
- Operational production of satellite-based PM_{2.5} will provide useful data now, while facilitating additional evaluation and enhancement later.

Future Work

- estimates.
- Continue to evaluate system where data are available.
- Develop system documentation and encourage system adoption through information sharing and support.

Good environmen

Contact Us

707.665.9900 sonomatech.com Nathan Pavlovic (npavlovic@sonomatech.com) Presented at the 2019 American Geophysical Union Fall Meeting, December 9-13, 2019, San Francisco, CA (A53T-2931, STI-7151)

Figure 6. Annual average ground-level PM_{2.5} concentrations for Africa calculated with

• Evaluation shows promise for use of MAIAC data for near-real-time daily ground-level

• Develop and implement operational satellite data surface PM_{2.5} and fusion

Project implemented by:

Sonoma Technology STi